The Kaizen Multiplier Effect: Team-Led Improvement Ideas Boost Safety, Efficiency, and Uptime for Precision Molding Operation

The Kaizen Multiplier Effect: Team-Led Improvement Ideas

Company
A global precision manufacturer of specialty pumps for personal care products.

Objective
Conduct a process mapping to find ways to improve cell layout, machine staffing, safety and productivity for two subassembly machines at one of the company’s sites.

Situation
Two subassembly families are produced on two machines. Each subassembly has eight components and two of these components are shared between subassemblies. There are multiple styles of most components. In all, there are four types of set-ups performed on each machine. A box of finished subassemblies had to be removed from the machine, taped, and palletized every 12 minutes. The machines were producing 93 subassemblies per minute, but the daily history-based goal was 37,200 parts, only 35% of capacity. One operator runs each subassembly machine.
The Kaizen Multiplier Effect: Team-Led Improvement Ideas Boost Safety, Efficiency, And Uptime For Precision Molding Operation
Team Orientation
The company selected individuals from all three shifts of the operation to participate on the kaizen team. After conducting lean and kaizen training, DPA senior consultant Mike Beauregard led the team in defining process requirements, running trials, creating workflow diagrams, identifying improvement opportunities and creating a new floor layout.

Findings and Challenges
One operator had been assigned to each of the subassembly machines. The kaizen team observed the process and found that the operator’s time was taken up filling component feed hoppers, removing the product, testing, paperwork, and resolving short machine stoppages (microstops).

The team observed an operator running one of the subassembly machines. The size and location of the feed hoppers for each machine meant that they had to be filled constantly, tying up the operators and increasing their travel time.

After they conducted a trial with one operator running both machines, they discovered that the lines were down one-sixth of the time due to microstops. The time losses often happened when the operator was on the other machine so the operator had to recognize the other machine was down and then walk over to it – leading to increased downtime. The floor was very slippery with silicone; one team member slipped and nearly fell during the observation.

Solutions

After mapping current state workflow for the two machines and observing these issues, the team generated and began to implement dozens of improvement ideas. They included:

Safety
The team ordered absorbent blankets to prevent the silicone from getting to the floor and are taking steps to increase floor traction in case some silicone still escapes.

Improving flow and eliminating paperwork
Six of the component feed hoppers are being enlarged to hold one box of components each. The other two components will be converted from boxes to gaylords and the components in the gaylords will be loaded into the machine with autodumpers. Gaylords will also be used on finished subassemblies. Instead of changing boxes every 12 minutes, these gaylords will be changed every 2-4 hours. Box by box paperwork will be eliminated by going to a bar-code scanning system.

Streamlining testing
Based on data showing no failures in 3 years and redundant final assembly inspection, the twice per shift functional testing of the subassemblies will be changed to the first-piece inspection only.

Better signaling of microstops
The team also identified some causes of microstops and determined action items to eliminate those. Andon lights will be added to indicate when and where microstops happen in the subassembly machines. Auto-restart will be added to the machines so that a machine doesn’t remain down after it clears its own problems.

The team projected that weekly improvements to and around the machines would yield significant increases in operator availability and production time:

Issue Increase in Operator Availability Increase in Production Time
Eliminate 2x/shift testing. 12.0 man-hours
Streamline safety checks/daily relay checks. 12.0 man-hours 12.0 mach-hours
Eliminate sensor checks; clean as needed. 6.0 man-hours 6.0 mach-hours
Reduce shift-end cleaning (less debris on valves & silicone red) 12.0 man-hours 12.0 mach-hours
Bar code scanning; minimal paperwork 72.0 man-hours
Larger feed hoppers 36.0 man-hours
Reduce microstops by 50% 18.0 man-hours 18.0 mach-hours
168.0 man-hours 48.0 mach-hours

 

Future Outcomes
Once the improvements above are fully implemented, they will equal 48 machine-hours per week or one day per machine per week. Once the improvements are fully implemented, the two-machine operation will have the capacity to produce an additional 267,840 subassemblies per week.


Questions or comments? Write us at info@danielpenn.com or call 860-232-8577.

Speak Your Mind

*